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The majority of the results describing the input-output properties
of feedback systems are based on some properties of linear time-invariant
systems. This is the case for derivations of the circle criterion (say,
using the small gain theorem), the Popov criterion (say, using the passi-
vity theorem), and in the use of the loop shifting theorem which is so
useful to shift sectors of the form [0, k] to [kl, ké]. Thus it is
important to obtain most general results concerning linear time-invariant
systems., We propose to present some recent developments in this field
which improve upon the results, of [1*4]. Furthermore we particularly
emphasize the parallelism that exists.betweén the continuous—time case
and the discrete-time case.

We consider an n-input, n-output, linear time-invariant feedback
system. To start with, we assume unity feedback. The open loop gain
is specified by the n X n matrix transfér function é(s) in the continuous

cese and G(z) in the discrete-time czse.

In the following, R (C) denotes the field of real (complex) numbers.
W2+.denotesAthe nonnegative real numbers. R (Eanxn) denotes the set of
all n-vectors (nxn matrices) with elements iniR.‘ Cé and €*" are simi-
larly defined. F&r any 0 € R, (JA(G) aenotes the Banach algebra, [1],
(where "+" is the pointwise addition and product is the convolution) of

generalized functions of the form:
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where t v fa(t)e is in L7y with 0 = tO < t1 < s fi € W{; Via and
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% |f.|e 1< co, Ljin(ﬁ) QJAPxn(G)) denotes the set of all n—vectors
1 .
i=0

(nxn matrices) with components in(JACG). If o = 0,:we write<JA instead
of _A(0).

The superscript A(~) denotes Laplace transforms: f = g£[f]. (z-
transforms: % éfgg[f]). For a treatment of analytic functions taking
values in € see [7].

Typical among the new results that we prove are

Theorem 1. (Continuous~time) Suppose that

8s) = & (o) +i ZEM,
1=0 o=1 B=1 (57Pqy )
;; (s-p,, )8

where
(a) ¢ () E;jxnxn(c) for some 0 € R
R' . .
n
() Ry € € for B =1, 2, *c, m,

(c) fora=1,2, -, k,_Re[pa] 2_6; and pa'# Pyt for o # a'.

a=1, 2,°++, k

Under these conditions, if

(i) det Rom #0 fora=1, 2, *++, k
8

and if

(ii) inf |det[I + G(s)]] > O,
Re s >0

then the closed~loop impulse response, H(*), is in1J4nxn(0).



Theorem 2. (Continuous~time) Suppose that é(s) is given by (3) and.that
k =1 and my = 1 (di.e. G has only a simple pole, Pys in the closed half
plane Re s > U). Suppose also that the residue matrix R11 is singular.
Under these conditions, if1

and if

(ii) inf |det[I + G(s)1] > O
Re s >0

then the closed-~loop impulse response H(*) is inr;@nxnﬂj).

Corollary 2.1. Suppose that‘a(s)'is given by (3) but that k > 1 and m, = 1

for a =1, 2, «°*, k (i.e. &(s) has only simple poles in Re s > C0). Suppose
also that
(1) either det Ral #0

or, whenever det Ral = 0 we have

det[H,,(p )] # 0,

and
(i1) inf |det[I + G(s)]] > ©

Re s > ©

Then the closed-loop impulse response H is inlenxn(c)‘
In the discrete—time case, the impulse response is specified as a se-
quence of matrices in @nxn(or Eenxn) say, (GO, Gl’ GZ’ sees°), We say that

a sequence belongs to Zixn(p) for some positive real number p iff

[ve] [e o]
E “Gk“p—k < ®, and we say that its corresponding z-transform G(z) ==§ sz"k
k=0 0



is in iixn(p). The analogous results of Theorem 1 for the discrete-time case

can be found in [2]. We state below in Theorem 3 and Corollary 3.1 the dis-~

crete~time analbgsito_Theorem 2 and Coxrollary 2.1.

Theorem 3. (Discrete-time) Suppose that E(z) is given by
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G(z) = %‘Giz + TZZEIY
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where
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for some posgitive real
nxn(p) P P>

(b) p; € Cand [p| >p

(e) Ry € ¢™" is singular.

Under these conditions, ifTT

(1) det[M..(p.)]1 # 0.

22(Py

and if

(ii) inf Idet[I + é(z)]! >0
ozl >0

1

Then the closed-loop impulse response H € knxn(p).

Corollary 3.1. Suppose that G(z) is given by

~ - -1 = Ral
G(2) =Zciz * Z (z - pu)
0 o=1

Tfﬁzz(z) is defined similarly as in Theovem 2.

b
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Az E : -1 1.1
= GQ(Z) + z (1 - P2 ) Ral
o=1

where
(a) G () € E,l (p) for some pOSitive~real. D,
% nxn
() fora=1, 2, =+, k, pa<5 c, lpal >p, and for a # a', P, # Pyt
Under these conditions, if
(i) either det Ral # 0

or, whenever det Ra = (0, we have

1

det 1y, (2,)1 # 0,

and if

(ii) inf |det[I + G(z)]] > O
z! 2 p

- ' 1
Then the closed-loop impulse response H is in ﬁpxn(p).

It is expected that the final paper will include further results.
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